Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

Posts

Future Blog Post

Published:

This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.

Blog Post number 4

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

publications

Interpreting Word Embeddings Using a Distribution Agnostic Approach Employing Hellinger Distance

Published in Text, Speech, and Dialogue. (TSD), 2020

Word embeddings can encode semantic and syntactic features and have achieved many recent successes in solving NLP tasks. Despite their successes, it is not trivial to directly extract lexical information out of them. In this paper, we propose a transformation of the embedding space to a more interpretable one using the Hellinger distance. We additionally suggest a distribution-agnostic approach using Kernel Density Estimation. A method is introduced to measure the interpretability of the word embeddings. Our results suggest that Hellinger based calculation gives a 1.35% improvement on average over the Bhattacharyya distance in terms of interpretability and adapts better to unknown words.

Download here

Analysing the semantic content of static Hungarian embedding spaces

Published in XVII. Magyar Számítógépes Nyelvészeti Konferencia, 2021

Word embeddings can encode semantic features and have achieved many recent successes in solving NLP tasks. Although word embeddings have high success on several downstream tasks, there is no trivial approach to extract lexical information from them. We propose a transformation that amplifies desired semantic features in the basis of the embedding space. We generate these semantic features by a distant supervised approach, to make them applicable for Hungarian embedding spaces. We propose the Hellinger distance in order to perform a transformation to an interpretable embedding space. Furthermore, we extend our research to sparse word representations as well, since sparse representations are considered to be highly interpretable.

Download here

Changing the Basis of Contextual Representations with Explicit Semantics

Published in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop, 2021

The application of transformer-based contextual representations has became a de facto solution for solving complex NLP tasks. Despite their successes, such representations are arguably opaque as their latent dimensions are not directly interpretable. To alleviate this limitation of contextual representations, we devise such an algorithm where the output representation expresses human-interpretable information of each dimension. We achieve this by constructing a transformation matrix based on the semantic content of the embedding space and predefined semantic categories using Hellinger distance. We evaluate our inferred representations on supersense prediction task. Our experiments reveal that the interpretable nature of transformed contextual representations makes it possible to accurately predict the supersense category of a word by simply looking for its transformed coordinate with the largest coefficient. We quantify the effects of our proposed transformation when applied over traditional dense contextual embeddings. We additionally investigate and report consistent improvements for the integration of sparse contextual word representations into our proposed algorithm.

Download here

teaching

Teaching experience 1

Undergraduate course, University 1, Department, 2014

This is a description of a teaching experience. You can use markdown like any other post.

Teaching experience 2

Workshop, University 1, Department, 2015

This is a description of a teaching experience. You can use markdown like any other post.